AMRUTVAHINI COLLEGE OF ENGINEERING, SANGAMNER

DEPARTMENT OF MECHANICAL ENGINEERING

M.E. DESIGN ENGINEERING (2017 Pattern) Course Outcomes

Course	Course Name	Course Outcomes-on the completion of this course student will			
Code SEMEST	FED I	be able to			
507201	Advanced	CO1	Davidon knowledge of numerical methods applicable		
307201	Mathematics	COI	Develop knowledge of numerical methods applicable		
	Maniemancs	CO2	for mechanical engineering. Formulate and obtain the numerical solution of		
		CO2			
		CO2	mechanical engineering problems.		
		CO3	Able to compare different numerical schemes.		
		CO4	Understand the algorithms of mechanical engineering related software packages.		
502202	Material	CO1	Summarize ductile and brittle type fractures using		
	Science and		different theories.		
	Mechanical	CO2	Integrate design considerations in mechanical		
	Behaviour of		behaviour of advanced materials.		
	Materials	CO3	Review strengthening mechanisms of materials and		
			selection of materials		
502203	Advanced Stress	CO1	Solve the problems related to the theory of elasticity.		
	Analysis	CO2	Analyze two dimensional problems in rectangular as		
	7 tharysis	CO2	well as polar co-ordinates.		
		CO3	Find shear center for various cross section.		
		CO3			
		CO4	Determine membrane stresses in shell and storage vessel.		
		CO5			
			Interrupt torsion of bars with various cross sections.		
502104	Dagagnala	CO6 CO1	Solve problem based on contact stresses.		
502104	Research	COI	Conduct literature survey by using various research considerations.		
	Methodology	CO2			
		CO2	Formulate the problem statement using research		
		CO2	considerations.		
		CO3	Demonstrate knowledge and understanding of data		
		GO 4	analysis in relation to the research process.		
		CO4	Interpret the analysis perfomed in relation to the		
50220 <i>5</i>	T 4. T		research process.		
502205	Elective I	001			
	Energy Audit	CO1	Compare energy scenario of India and World.		
	&	CO2	Carry out Energy Audit of the Residence / Institute/		
	Management	~~~	Organization.		
		CO3	Identify and evaluate energy conservation		
			opportunities in Thermal Utilities.		
		CO4	Identify and evaluate energy conservation		
	_	_	opportunities in Electrical Utilities.		
	Project	CO1	Understand the importance of projects and its phases.		
	Management	CO2	Analyse projects from marketing, operational and		
			financial perspectives.		
		CO3	Evaluate projects based on discount and non-discount		
			methods.		

	T	CO 1	D 1 4 1 11 C 1 1
		CO4	Develop network diagrams for planning and
	_	00.5	execution of a given project.
		CO5	Apply crashing procedures for time and cost optimization
	Intellectual	CO1	Appreciate the significance of Intellectual Property as
	Property	COI	
	Rights	CO2	a very important driver of growth and development. Statutorily acquire and use different types of
	Rights	CO2	intellectual property in their professional life.
SEMEST	LEB-II		interiectual property in their professional me.
502207	Analysis and	CO1	Synthesize and analyse four bar mechanisms.
302207	Synthesis of	COI	Synthesize and analyse four bar meenanisms.
	Mechanisms	CO2	Use computers for mechanism animation and
	Wicenamsins	CO2	analysis.
		CO3	Apply kinematic theories to real-world problems of
		003	mechanism design and synthesis.
502208	Advanced	CO1	Knowledge of fundamentals of Vibrations
202200	Mechanical	CO2	Considerably more in-depth knowledge of the major
	Vibrations	002	subject and ability to solve problems on Two degree
	\ 101 44 10115		freedom system, Multi degree freedom system
		CO3	Knowledge of Experimental Methods in Vibration
			Analysis.
		CO4	Understand and apply the methodology for dynamic
			Analysis.
		CO5	Understand Non-Linear Vibrations and Random
			Vibrations.
502209	Finite	CO1	Identify the concepts of idealization, discretisation
	Element		and able to define the boundary conditions.
	Method	CO2	Formulate element and global stiffness matrices.
		CO3	Evaluate results of finite element analysis.
		CO4	Identify sources of computational and physical errors
			of finite element analysis and its scope applicability.
		CO5	Implement the methodology of finite element analysis
			and Interpret numerical results.
		CO6	Use commercial finite element analysis software.
502210	Elective II		
	Acoustics &	CO1	Knowledge of design for noise and vibration.
	Noise Control	CO2	Knowledge of signal process.
	– I&II	CO3	Understanding hydrostatic and hydrodynamic
	<u> </u>		lubrication.
	_	CO4	Understanding of NVH control strategies.
	Process	CO1	Understand the basic concepts in process design,
	Equipment		block diagrams for flow of processes, material flow
	Design		balance, design pressures and temperatures
		CO2	Able to do cost and profitability estimation
		CO3	Able to use optimization technique such as
			Lagrange's multiplier and golden section method.
		CO4	Able to implement different design codes like IS-
			2825, ASME-SECT, EIGHT-DIV-II TEMA.API-650,
			BS-1500 & 1515 in various PED.

SEMES	ΓER-III		
602213	Optimization	CO1	Develop the ability to obtain the optimal solution for
	Techniques		engineering problems.
		CO2	Model engineering problems and pose it as an
			optimisation problem.
		CO3	Apply the optimisation methods to design a
			mechanical system.
602214	Mechanical	CO1	Classify various types of static characteristics and
	Measurements		types of errors occurring in the system.
	and Controls	CO2	Classify and select proper measuring instrument for
			linear and angular displacement.
		CO3	Classify and select proper measuring instrument for
			pressure and temperature measurement.
		CO4	Design mathematical model of system/process for
			standard input responses.
		CO5	Analyse error and differentiate various types of
			control systems and time domain specifications.
		CO6	Analyse the problems associated with stability.
602215	Elective III		
	Industrial	CO1	Understand the role of Tribology in mechanical
	Tribology-I &		system design.
	II	CO2	Understanding of friction and wear phenomenon.
		CO3	Apply the concepts of tribology for design and
			operations of bearings and lubrication requirements.
		CO4	Insights into performance of Hydrostatic (externally-
			pressurized) & Elasto-Hydrodynamic Lubrication
		CO5	Knowledge of Rheodynamic (static) Lubrication
	Product Life	CO1	Understanding of product structure and architecture of
	Cycle		the product families and similar products.
		CO2	Integrate lifecycle management strategies and
			knowledge to develop new and/or formulate
			appropriate engineering design solutions in
			engineering environment.
		CO3	Acquired engineering knowledge related to each
			phase of the life cycle through which the product
			passes with the usage of integrated software for
		~~·	monitoring and management.
		CO4	Incorporate preventive approaches concentrating on
			minimizing waste, hazard and risk associated with
			product design, development and manufacturing.